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A B S T R A C T   

Coarse measures of socioeconomic status, such as parental income or parental education, have been linked to 
differences in white matter development. However, these measures do not provide insight into specific aspects of 
an individual’s environment and how they relate to brain development. On the other hand, educational inter
vention studies have shown that changes in an individual’s educational context can drive measurable changes in 
their white matter. These studies, however, rarely consider socioeconomic factors in their results. In the present 
study, we examined the unique relationship between educational opportunity and white matter development, 
when controlling other known socioeconomic factors. To explore this question, we leveraged the rich de
mographic and neuroimaging data available in the ABCD study, as well the unique data-crosswalk between 
ABCD and the Stanford Education Data Archive (SEDA). We find that educational opportunity is related to 
accelerated white matter development, even when accounting for other socioeconomic factors, and that this 
relationship is most pronounced in white matter tracts associated with academic skills. These results suggest that 
the school a child attends has a measurable relationship with brain development for years to come.   

1. Introduction 

Students who attend high-quality schools demonstrate higher aca
demic achievement both in terms of reading and math scores (Baker 
et al., 2001; Chetty et al., 2015; Heck, 2000; Rivkin and Schiman, 2015), 
as well as long-term outcomes such as college admissions and social 
mobility (Chetty et al., 2011; Duncan et al., 2007; Murnane et al., 1995). 
A common suggestion in the scientific literature (Ng, 2018; Yeager and 
Dweck, 2012), and popular press (McCandliss and Toomarian, 2020; 
Boaler, 2013), is that the relationship between educational opportunity 
and academic outcomes reflects the influence that high-quality educa
tional experiences might exert on brain development. Despite the 
well-established links between school quality and academic achieve
ment, the specific relationship between educational opportunity and 
brain development remains unexplored. 

Past studies, however, have demonstrated a relationship between 
brain development and various non-academic socioeconomic and 
environmental factors (Brito and Noble, 2014). For example, diffusion 

MRI has revealed that higher family income predicts differences in white 
matter properties in adulthood (Dufford et al., 2020) and that parental 
income moderates the relationship between cognitive flexibility and 
tissue properties across a range of white matter tracts (Ursache et al., 
2016). Furthermore, the influence of genetic heritability on white 
matter structure has been shown to be higher for individuals from high 
income backgrounds (Chiang et al., 2011). Together these findings 
suggest that the financial resources available to an individual during 
childhood influence and interact with brain development in complex 
ways that are not fully understood. 

Additionally, lower levels of parental education have been linked to 
differences in white matter structure across multiple white matter tracts, 
including those purportedly underlying academic skills, such as the left 
arcuate fasciulus, left superior longitudinal fasciculus (SLF) and left 
inferior longitudinal fasciculus (ILF) (Noble et al., 2013; 
Ozernov-Palchik et al., 2019; Vanderauwera et al., 2019). These studies 
offer a variety of different (and sometimes conflicting) accounts of the 
relationship between white matter, parental education, and cognitive 
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skills, with some results finding a brain-behavior relationship in in
dividuals with lower levels of parental education (Ozernov-Palchik 
et al., 2019) and others suggesting that the relationship between 
parental education and cognitive behaviors is completely mediated by 
white matter properties (Noble et al., 2013; Vanderauwera et al., 2019). 
What none of these studies address is why parental education affects 
white matter structure. In other words, are differences in parental ed
ucation a proxy for a variety of environmental factors (broadly encom
passed by the construct of SES) that influence white matter 
development? Or are there specific aspects of a child’s environment that 
are responsible for the link between measures of SES and brain 
structure? 

Typical measures of socioeconomic status (SES) do not elucidate the 
specific aspects of an individual’s environment that drive differences in 
white matter development. The hormone cortisol has been shown to 
mediate the relationship between stressful life experiences and white 
matter properties (Simon et al., 2021), suggesting that environmental 
stress, which has been linked to aspects of SES (Luby et al., 2013), plays 
a role in white matter development. Furthermore, other specific envi
ronmental factors, such as home language (Turesky et al., 2022), screen 
use (Hutton et al., 2020), early childhood nutrition (Isaacs et al., 2010; 
Ottolini et al., 2020), and adverse childhood events (Hanson et al., 2013; 
Choi et al., 2009) have also been linked to differences in white matter 
properties. Together, these findings suggest that typical measures of 
SES, such as parental income or education, may act as proxies for a 
confluence of other environmental factors that are more directly related 
to white matter development. 

However, across these studies examining the link between SES and 
white matter development, an individual’s academic environment has 
gone unexplored. Although traditional measures of SES are highly 
correlated with school achievement (Reardon et al., 2021), it remains 
unclear the extent to which the specific school, and more generally the 
educational environment, that a child ends up in influences white matter 
development above and beyond the myriad of correlated factors that are 
wrapped up in indices of SES. 

It bears mentioning that educational intervention studies have 
demonstrated that educational experiences can drive changes in brain 
structure and function over remarkably short timescales. These studies 
have shown that a short-term, intensive reading intervention lead to 
changes across a range of white matter tracts, including left arcuate and 
left ILF, and that these changes correspond to changes in reading skill 
(Huber et al., 2018, 2021; Meisler et al., 2023). In the domain of 
mathematics, intensive learning experiences have been shown to 
“normalize’’ functional activity in students with mathematical learning 
difficulties (Iuculano et al., 2015) and participation in specific math 
curricula drives changes in neurotransmitter concentration in the mid
dle frontal gyrus and predicts longitudinal changes in mathematical 
reasoning (Zacharopoulos et al., 2021). 

Although these findings serve as a proof-of-concept that educational 
experience can shape brain development in a manner that facilitates the 
development of academic skills, the samples used in these studies 
included a small number of participants in an intervention setting and 
were not representative of the population at large (Henrich et al., 2010). 
Moreover, the intensive and highly controlled interventions employed 
by these studies are far from representative of the typical differences 
among American schools. Furthermore, these studies did not include 
measures of SES in their analyses; It is possible or even likely that in
terventions have variable effects on brain development and learning 
depending on a child’s sociodemographic background (Romeo et al., 
2018; Hermida et al., 2015). 

Although careful recruitment strategies can lead to socio
deomgraphcally diverse study populations, it is nearly impossible to 
capture the vast range of educational experiences of students across the 
United States in a typical brain imaging study. Recent efforts to collect 
and share large-scale neuroimaging datasets (Alexander et al., 2017; 
Bycroft et al., 2018; Casey et al., 2018; Harms et al., 2018; Jernigan 

et al., 2016) have now opened the door for researchers to explore the 
interplay between brain development, cognitive skills, and environ
mental and demographic factors. The ongoing ABCD study (Casey et al., 
2018) is particularly well positioned to examine the relationship be
tween school quality and brain development in a large and representa
tive sample. This study is following a cohort of approximately 10,000 
children from across the United States longitudinally to understand 
brain development throughout adolescence. In addition to neuro
imaging data, the ABCD study collects rich demographic and behavioral 
data on each participant, including traditional measures of SES, house
hold and neighborhood cohesion, and educational opportunity, as 
measured by the Stanford Education Data Archive (SEDA; see Methods 
for overview) (Reardon et al., 2021). This rich set of neuroimaging and 
demographic data presents the first opportunity to understand the 
relationship between brain development and the diversity of educa
tional environments experienced by students across the United States. 

In the current study, we test the hypothesis that differences in white 
matter development are related to the quality of an individual’s 
educational environment, while controlling for the multitude of factors 
indexed by traditional measures of SES. We first leverage the individual 
white matter tract data generated through automated-fiber quantifica
tion (AFQ) (Kruper et al., 2021; Yeatman et al., 2012a) to test the hy
pothesis that educational opportunity relates to white matter 
development in specific tracts underlying academic skill, such as reading 
and math. We find that FA in the bilateral arcuate fasciculus, left pos
terior arcuate, and the corpus callosum are related to educational op
portunity, even when controlling for other measures of socioeconomic 
status. We then train a brain-age model to test the hypothesis that 
educational opportunity relates to accelerated white matter develop
ment. This model suggests that an individual’s educational opportunity 
may influence white matter development throughout the brain, though 
this relationship may be more pronounced in white matter tracts asso
ciated with academic skills. 

2. Methods and materials 

2.1. Participants 

The participants in the present study come from the ABCD study, a 
ten-year longitudinal study that includes both neuroimaging and 
behavioral data collected from children aged 9–10 from 21 study sites 
across the United States (Casey et al., 2018). The data used in the present 
analysis come from the baseline and 2-year follow up visits of the ABCD 
study and can be found in the ABCD curated annual data release 4.0 
(https://nda.nih.gov/abcd/). The baseline observation included 6410 
individuals who had the necessary neuroimaging and demographic data 
and the longitudinal data included 4770 individuals with the necessary 
data at both time points. 

2.2. Covariates of Interest 

In both the cross-sectional and longitudinal models, we included a 
range of demographic and developmental factors as covariates including 
participant age, log-tranformed income-to needs ratio, parental educa
tion, family cohesion, neighborhood cohesion, biological sex, and pu
bertal status. All of these measures are readily available or calculated 
using the data present in the ABCD data release 4.0. 

2.2.1. Income-to-needs ratio 
Log-transformed income-to-needs ratio was calculated using the 

approach outlined in Weissman et al. (2023), which combines family 
income and household size data. Briefly, in the ABCD study, parents 
report family income on a scale of 1–10, where each interval represents 
an income range. The midpoint of the reported range was then calcu
lated for each participant. This dollar amount was then divided by the 
poverty threshold for a household of a given size. The thresholds used in 
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this calculation come from the 2017 report by the U.S Census Bureau 
(Bureau, 2024). This value was then log-transformed. 

2.2.2. Parental education 
The ABCD study records parental reports of the highest level of ed

ucation they have completed. This is measured on an ordinal scale 
ranging from “Never attended school” to “Doctoral Degree”. In the 
present analysis, this is operationalized as the average level of parental 
education of both parents/guardians. 

2.2.3. Non-academic environment 
Family home environment was measured using the average of the 

nine questions present on Family Environment Scale-Family Conflict 
(Moos and Moos, 1994). A higher score on this measure indicates higher 
levels of conflict within an individual’s household and family environ
ment. Neighborhood cohesion was assessed by taking the average of the 
ten items present on the ABCD Parent PhenX Community Cohesion 
measure (Hamilton et al., 2011). For this measure, a higher score in
dicates that the participant perceives their neighborhood and sur
rounding community as safer and more cohesive. 

2.2.4. Pubertal status 
Pubertal status was assessed using the PDS (Petersen et al., 1988), a 

measure designed to mimic the Tanner scale to assess the development 
of secondary sex characteristics during the onset of puberty. In line with 
past research using PDS in the ABCD sample (Holm et al., 2023; Beck 
et al., 2023), pubertal status was calculated by taking the average of the 
seven PDS items present on the parental PDS survey collected at each 
time point. 

2.2.5. Educational opportunity 
Educational opportunity was operationalized using linked data from 

the Stanford Education Data Archive (SEDA) (Reardon et al., 2021). This 
dataset leverages standardized test scores from 3rd to 8th grade students 
in nearly every single school district in the United States to generate two 
distinct measures for a given school district: intercept and slope. The 
details on how these two measures are calculated are outlined in detail 
in Reardon et al. (2021). 

Some scholars interpret these scores as a metric of general school or 
teacher performance and emphasize that external influences can impact 
test performance, which makes these scores inappropriate for evaluating 
school or teacher quality (Baker et al., 2010; Darling-Hammond et al., 
2012). However, others consider these scores to be a metric of the 
educational opportunities afforded to the students in a given school 
district. According to this interpretation, the educational opportunities 
provided by a given school or district not only reflect properties of those 
schools but also external factors, including parental, community, and 
early childhood experiences that support learning the reading and 
mathematics concepts assessed on standardized tests, as well as toxin 
exposure (Jacqz, 2022) or community conflict that may negatively 
impact test scores (Drescher et al., 2022; Reardon, 2019, 2013). 

More specifically, SEDA intercept refers to the average standardized 
test score for third graders from a given school district relative to the 
national average and can be thought of as an index of the household, 
community level, pre-school, and early elementary school educational 
opportunities provided by a school or district (Drescher et al., 2022; 
Reardon, 2019). On the other hand, SEDA slope is a measure of 
year-to-year growth in standardized test scores for students from a given 
school or district relative to the national average. This can be thought of 
as the educational opportunity provided to students by a specific school 
or district between 3rd and 8th grade. 

Both SEDA intercept and slope are in z-score units and relative to 
national norms. Thus, a school with a SEDA intercept and slope of zero 
performs at the national average in terms of third grade test scores and 
in terms of how much students grow from year to year. A school with a 
SEDA intercept of − 1 and slope of zero performs 1 standard deviation 

below the national average, and students progress at the average rate, 
meaning the discrepancy in achievement is maintained throughout 
schooling. Because the ABCD study began when participants are in 
either 4th or 5th grade, SEDA intercept is the most relevant measure of 
the educational opportunity that a participant has experienced up until 
the first ABCD measurement. 

2.3. Diffusion MRI acquisition and processing 

The neuroimaging data used in this analysis come from the baseline 
and Year 2 follow-up sessions collected across the 21 ABCD study sites. 
An overview of the data acquisition and preprocessing protocols can be 
found in Casey et al. (2018) and Hagler et al. (2019). Briefly, multi-shell, 
high angular-resolution imaging scans were collected on each partici
pant during each scan session. These data underwent manual quality 
control and were then minimally preprocessed using a pipeline that 
included eddy-current correction, motion correction, B0 distortion 
correction, and gradient warp correction (Hagler et al., 2019). 

These preprocessed diffusion images were then processed with 
pyAFQ (Kruper et al., 2021). Briefly, fiber orientation distributions were 
estimated in each voxel using constrained spherical deconvolution 
(Tournier et al., 2007) implemented in DIPY (Garyfallidis et al., 2014) 
before probabilistic tractography was used to generate streamlines 
throughout the white matter. As originally described in Yeatman et al. 
(2012a), 30 major white matter tracts were identified from these 
streamlines. Each tract was then sampled to 100 nodes. At each node, 
fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity 
(RD), and axial diffusivity (AD) were calculated using the diffusion 
kurtosis model (DKI) (Jensen et al., 2005; Henriques et al., 2021). There 
is substantial overlap between the anterior forceps and anterior frontal 
calossal tracts, as well as between the posterior forceps and occipital 
callosal tracts identified by pyAFQ. Because of this, we excluded the 
anterior and posterior forceps from our analysis, leaving us with 28 total 
tracts (see Supplemental Fig. 1 for overview of the tracts identified by 
pyAFQ used in this analysis). 

To account for potential non-biological variance in the diffusion MRI 
signal introduced by scanner differences across the 21 ABCD sites, 
ComBat harmonization (Fortin et al., 2017, 2018; Johnson et al., 2007) 
was performed on the diffusion metrics calculated by pyAFQ. Harmo
nization was performed using the neurocombat_sklearn Python library 
(Fortin et al., 2018; Johnson et al., 2007). 

2.4. Univariate mixed-effect modeling 

We constructed a series of linear mixed-effects models to explore 
univariate relationships between FA in the left arcuate and de
mographic, developmental, and socioeconomic factors while controlling 
for various random effects in white matter properties. These models 
included family structure nested within scanner site as random effects 
(Saragosa-Harris et al., 2022) and either log-transformed incom
e-to-needs ratio, parental education, family cohesion, neighborhood 
cohesion, sex, SEDA intercept or pubertal status as a single fixed-effect 
predictor. We focused these analyses on the left arcuate, as past 
studies have shown this tract to relate to both reading skill and measures 
of SES (Vanderauwera et al., 2019; Huber et al., 2018; Yeatman et al., 
2012b). As a control measure, we also fit the same sequence of models 
predicting FA in the right arcuate to assess whether these univariate 
relationships occur across the white matter or are specific to the left 
arcuate. 

2.5. Multivariate mixed-effect modeling 

Because measures of socioeconomic status are highly correlated with 
each other, any observed relationship between white matter properties 
and any one index of SES may actually be driven by a separate, yet 
correlated measure. To test the hypothesis that there is a specific 
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relationship between educational opportunity and white matter prop
erties, while accounting for other developmental and socioeconomic 
effects, we modeled the relationship between SEDA intercept and FA 
across all the white matter tracts identified by pyAFQ. 

Based on previous research in smaller samples linking specific white 
matter tracts to academic skills, we hypothesized that educational op
portunity would specifically relate to FA in the left arcuate fasciculus 
(ARC), left posterior arcuate fasciculus (pARC), bilateral inferior longi
tudinal fasciculus (ILF), bilateral superior longitudinal fasciculus (SLF), 
and uncinate fasciculus (UNC), as these tracts have all been previously 
implicated in academic skills, such as reading and arithmetic (Tsang 
et al., 2009; Wandell and Yeatman, 2013; Polspoel et al., 2019; Nav
as-Sánchez et al., 2014). To test this hypothesis, within each tract, we fit 
a linear mixed-effects model predicting mean harmonized fractional 
anisotropy (averaged over the length of tract) at the first ABCD obser
vation from SEDA intercept while also controlling for age, 
log-transformed income-to-needs ratio, parental education, family 
cohesion, neighborhood cohesion, sex, and pubertal status. Family 
structures nested within scanner site were included as random effects in 
each model (Saragosa-Harris et al., 2022). 

2.6. Growth modeling 

In addition to our cross-sectional models, we also investigated the 
longitudinal development of the left and right arcuate. Because past 
longitudinal studies have linked the development of left arcuate and 
gains in reading skill (Huber et al., 2018; Yeatman et al., 2012b; Van Der 
Auwera et al., 2021), we again chose to center this analysis around this 
tract and its right hemisphere counterpart. To investigate the develop
mental dynamics of these two white matter tracts, we fit a series of linear 
growth models (Grimm et al., 2016) predicting mean FA over time 
(operationalized as years since initial MRI scan). In these models, we 
again included individuals nested within family structures nested within 
scanner sites as random effects. To control for known developmental, 
demographic, and socioeconomic effects, we also included initial age, 
pubertal status, sex, log-transformed income-to-needs ratio, parental 
education, family cohesion, neighborhood cohesion, and sex as 

fixed-effects. Our main predictors of interest in these models were time, 
SEDA intercept, tract (right or left arcuate), and their interactions. 

To investigate intraindividual change in the white matter properties 
of the left and right arcuate and the relationship of this change with 
educational opportunity, we constructed a series of growth models 
(Grimm et al., 2016) specified as follows: 

FAtijk = β0ijk + β1ijk(Time in Studyijk) + etijk  

where each participant’s FA at a given scan session, t, is modeled as a 
function of a participant specific intercept (β0ijk), a participant specific 
slope (β1ijk), and a residual error term (etijk). To examine interindividual 
differences, the participant specific coefficients were modeled as: 

β0ijk = γ00ij + γ01(SEDAInterceptijk) + u0ijk  

β1ijk = γ10ij + γ11(SEDAInterceptijk) + u1ijk  

where the γ coefficients on SEDA Intercept refer to, on average, how 
baseline FA and FA development differ with SEDA intercept and u0ijk and 
u1ijk refer to residual error at the individual level. These models also 
included initial age, log-transformed income-to-needs ratio, parental 
education, family home environment, neighborhood cohesion, and pu
bertal status as covariates. 

Our final growth model, which examined FA development in the left 
and right arcuate simultaneously, included two additional parameters, 
γ02(Hemisphereijk) and γ 12(Hemisphereijk), which allowed us to directly 
test the hypothesis that educational opportunity is related to differences 
in FA development between the left and right arcuate. In this model γ00ij 

and γ10ij are modeled at the family structure level as: 

γ00ij = α00i + υ0ij  

γ10ij = α10i + υ1ij  

where v0ij and v1ij refer to residual error at the family structure level and 
α00i and α01i are modeled at the level of scanner site as: 

Fig. 1. A. Correlation matrix illustrating the univariate relationships between mean FA in the left arcuate, SEDA intercept, and other demographic and socioeco
nomic factors. Coefficients in bold represent correlations where FDR-corrected p<0.05.B. Beta-weights for linear mixed-effects models predicting mean FA in the left 
and right arcuate from a single predictor, specified on the x-axis. Each model included a random effects structure of family structure nested within scanner site. The 
colors of each bar denote each predictor variable. Error bars represent the standard error of each beta-coefficient. Bars that are bolded illustrate the beta-weights with 
FDR-corrected p<0.05. 
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α00i = a0 + w0i  

α10i = a1 + w1i  

where w0i and w1i refer to residual error at each scanner site and a0 and 
a1 are the mean FA and rate of FA development, respectively, at each 
scanner site. 

These models were fit in R version 4.2.1 (R Core Team, 2022) using 
the lme4 package (version 1.1.30) (Bates et al., 2015). 

2.7. Brain-age gap analysis 

Although the bundle-wise analyses allowed us to explore multivar
iate relationships between socioeconomic factors and the development 
of individual white matter tracts, linear-mixed effects models are not 
well suited to model global white matter development. To better un
derstand the link between educational opportunity and global white 
matter development, we trained a convolutional neural network (ResNet 
(He et al., 2015)) implemented in the Python library AFQ-Insight 
(Rokem et al., 2023; Richie-Halford et al., 2021) to predict age based 
on the harmonized pyAFQ outputs from the baseline and Year 2 
follow-up scans. We chose this model over other approaches because 
deep learning models have been shown to generate state-of-the-art age 
predictions from tractometry data (Rokem et al., 2023). 

The data used to train and evaluate this model were split into three 
splits: a training set, a test set, and a validation set. To prevent peeking, 
longitudinal observations from the same participant were placed in the 
same split. The validation set contained 20 % of the observations, while 
the remaining 80 % was distributed across the training and test sets. To 
prevent overfitting, the model was then trained on varying proportions 
of the training and test sets, allowing us to determine the point at which 

the model performance did not improve with the addition of more 
training data (Supplemental Fig. 2). 

We found that model performance plateaued when the model was 
trained on 56% of the overall sample. This model attained an R2 score of 
0.22 on the unseen validation set. To prevent data leakage in our brain 
age models, we then generated two additional train-test splits to ensure 
that brain age predictions for each individual were generated from a 
model that was trained on data that did not include that individual. We 
then trained two additional models on 56% of the overall sample to 
generate brain age predictions for the individuals used as the training set 
of the initial brain age model. Across these three models, the average R2 

score was 0.19 on the unseen data with an average MAE of 0.834 years. 
It should be noted that the variance explained by these models is smaller 
than other brain age models (Rokem et al., 2023) due to the restricted 
age range in the ABCD sample. Nevertheless, the residuals from this 
model, or the difference between the model’s predicted age and each 
participant’s observed age, can be thought of as the brain-age gap 
(BAG), a relative measure of how accelerated or delayed an individual’s 
brain is maturing. 

We then calculated the BAG for each individual, using the prediction 
from the model that was not trained on that individual’s data. The re
siduals of these brain age models were then used as the outcome mea
sure of a linear-mixed effects model to explore the relationship between 
educational opportunity and brain-age. Our baseline model included 
age, log-transformed income-to-needs ratio, parental education, family 
cohesion, neighborhood cohesion, sex, and pubertal status as fixed- 
effects (and the same random effects structure as previous models), 
allowing us to control for known demographic, socioeconomic, and 
developmental factors related to brain development (Simon et al., 2021; 
Holm et al., 2023). We then added SEDA intercept as an additional 

Fig. 2. A. Renderings of the five white matter tracts significantly related to SEDA intercept. These include the left arcuate fasciculus, right cingulate cingulum, and 
the motor, superior parietal, and temporal bundles of the corpus callosum. Shading represents the -log10(p-value) for the beta-weight on SEDA intercept from the 
models predicting FA in each tract (1.301 corresponds to a p-value of 0.05). This association was strongest in the left arcuate (yellow in the top panel). B. Beta- 
coefficients for the fixed effects of the models predicting FA in each major white matter tract. The x-axis represents a specific bundle identified by pyAFQ. Each 
row and color in the figure refers to the fixed-effect in each model. Error bars represent the standard error of each beta-coefficient. Bars that in bold illustrate the beta- 
weights with FDR-corrected p<0.05. 
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predictor to the baseline model in order to test the hypothesis that 
educational opportunity is related to global white matter development. 
All linear-mixed effects models were carried out with R version 4.2.1 (R 
Core Team, 2022) using the lme4 package (version 1.1.30) (Bates et al., 
2015). 

Code to replicate the analyses and figures presented in this manu
script can be found at: https://github.com/earoy/white_matter_educati 
on 

3. Results 

3.1. Diffusion properties of the left arcuate are related to socioeconomic 
factors 

We began our analysis by calculating correlations between SEDA 
intercept and other measures of socioeconomic status thought to influ
ence SEDA scores. As expected, SEDA intercept is highly correlated with 
traditional measures of socioeconomic status (Fig. 1A), such as log- 
income-to-needs ratio (r = 0.238, p < 0.001) and parental education 
(r = 0.477, p < 0.001). The relationships between these various indices 
of SES raise the possibility that measures such as parental education and 
household income could act as proxies for other factors, like educational 
opportunity, that might more directly influence brain development. 

After observing these correlations between various socioeconomic 
factors, we then attempted to replicate the results from past studies 
linking white matter and socioeconomic factors by calculating the cor
relation between mean FA in the left arcuate and a range of demographic 
and developmental factors, including age, pubertal status, sex, family 
cohesion, log-transformed income-to-needs ratio, parental education, 
neighborhood cohesion, and SEDA intercept. We found small, yet sig
nificant correlations (Fig. 1A) between mean FA in the left arcuate and 
parental education (r = 0.093; pcorrected < 0.001), income-to-needs ratio 
(r = 0.046; pcorrected = 0.022), SEDA intercept (r = 0.076; pcorrected <

0.001) and age (r = 0.097; pcorrected < 0.001), but not between sex, 
family cohesion, neighborhood cohesion, or pubertal status (all pcorrected 
> 0.05). 

However, these correlations do not account for individual and site- 
level random effects that might relate to white matter properties. To 
account for these random effects, we then fit a series of univariate 
models using each socioeconomic or developmental factor as a single 
predictor of FA in the left arcuate. Similar to the correlation analyses, 
these models revealed significant relationships between mean FA in the 
left arcuate and parental education, SEDA intercept, and income-to- 
needs ratio (all pcorrected < 0.001; Fig. 1B). Additionally, these models 
identified a slight yet significant relationship between home environ
ment and mean FA in the left arcuate (β = − 0.0004, pcorrected = 0.004). 

Interestingly, the models predicting FA in the right arcuate also 
suggested significant relationships between mean FA and parental ed
ucation, income-to-needs ratio, and SEDA intercept (all pcorrected < 0.05) 
as well as significant effects of pubertal status (β = 0.002, pcorrected 
= 0.032) and biological sex (β = − 0.004, pcorrected < 0.001). 

3.2. The relationship between educational opportunity and tissue 
properties varies across the white matter 

The results from our multivariate models predicting FA across each 
individual white matter tract are presented in Fig. 2. Examining the 
beta-coefficients from these models revealed significant relationships 
between FA and SEDA intercept in the left arcuate, right cingulate 
cingulum (CGC), and three colossal tracts (all FDR-corrected p < 0.05; 
Fig. 2, second row from bottom). 

However, as expected, FA in many tracts was also related to other 
environmental, developmental, and demographic factors (see Fig. 2B for 
overview of these relationships). Parental education was linked to FA in 
the bilateral arcuate, CST, IFOF, ILF, left posterior arcuate, left VOF, and 
the right SLF, whereas pubertal status was negatively related to FA in a 

collection of four calossal bundles. Furthermore, age was positively 
related to higher FA across the entirety of the white matter and males, on 
average, demonstrated lower FA compared to females across most white 
matter tracts, with the exception of the left and right CGC and temporal 
portion of the corpus callosum. 

3.3. Development of the left and right arcuate is moderated by 
educational opportunity 

The two growth models predicting mean FA in the left and right 
arcuate revealed significant changes in FA in both tracts within each 
participant across the two observations (both p < 0.001; See Supple
mental Materials for full model outputs). These models also revealed a 
significant relationship between SEDA intercept and mean FA across 
both tracts, suggesting that, on average, individuals with greater 
educational opportunities have higher FA in both the left and right 
arcuate. When we added a SEDA intercept by time interaction to both 
growth models, Wald tests comparing the full and reduced models 
revealed that the addition of the interaction term significantly improved 
the fit for model predicting FA in the left arcuate (χ2(1) = 36.632, p <
0.001) but not the right arcuate (χ2(1) = 1.676, p = 0.196). 

The combined growth model based on data from both the left and 
right arcuate fasciculus revealed that, on average, FA was lower in the 
right arcuate compared to the left (γ02 = − 0.023; p < 0.001) and that FA 
increased over time in both tracts (a1 = 0.002; p < 0.001). Furthermore, 
Wald tests comparing growth models with and without a tract by time 
interaction suggested that the average rate of FA development similar 
across both tracts χ2(1) = 0.605, p = 0.437). Interestingly, individuals in 
environments with higher SEDA intercept scores, on average, had higher 
FA in both tracts (γ01 = 0.002, p = 0.01) and also demonstrated 
significantly faster rates of FA development across both the right and left 
arcuate (γ11 = 0.0013; p < 0.001). This interaction was slightly, yet 
significantly, more pronounced in the left arcuate compared to the right 
(γ12 = − 0.001; p = 0.004; Fig. 3). For a full summary of the longitudinal 
growth model, see Supplementary Table 1. 

3.4. Educational opportunity is linked with accelerated white matter 
development 

A Wald test comparing the full and reduced mixed-effects models 
predicting brain-age gap (BAG) revealed that SEDA intercept signifi
cantly improved model fit (χ2(1) = 6.651, p = 0.009). The coefficients of 
the full model that included SEDA intercept revealed a significant 
negative relationship between BAG and age (β= -0.471; p<0.001; See 
Supplemental Table 2 for full model output), suggesting that our model 
underestimates the brain-age of older participants and over estimates 
the brain age of younger participants. This is a known phenomenon with 
brain age models (Butler et al., 2021) and can be interpreted as 
regression to the mean. 

Additionally, the model revealed a significant relationship between 
BAG and pubertal status (β = 0.042; p<0.001). Interestingly, this model 
also revealed a significant relationship between the BAG and SEDA 
intercept (β = 0.022; p = 0.009; Fig. 3). There were no further signifi
cant relationships between BAG and other demographic and environ
mental predictors (all p>0.05). 

4. Discussion 

In the present study, we leveraged the unique epidemiological 
sample from the ABCD study, combined with data from the Stanford 
Education Data Archive, to explore the relationship between an in
dividual’s white matter development and the educational opportunities 
provided by their early childhood and elementary school environments. 
The scale of the ABCD study, coupled with the rich demographic mea
sures present in the data, provides the very first opportunity to examine 
how the diverse educational experiences found across the United States’ 
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educational system relate to brain development, while also accounting 
for other environmental factors. 

These analyses showed that SEDA intercept, a measure of early 
educational environment, was associated with fractional anisotropy in 
the left and right arcuate fasciculi, left posterior arcuate, and the corpus 
callosum, even when accounting for other socioeconomic factors known 
to relate to white matter, such as parental education or household in
come. These tract-wise results demonstrate that the school a child at
tends is related to the development of some white matter tracts above 
and beyond the myriad of other socioeconomic variables that charac
terize a child’s environment. 

However, these models also revealed significant relationships be
tween developmental and socioeconomic factors, such as age, sex, pu
bertal status, and parental education and FA in a range of white matter 
tracts. These results are in line with past studies linking socioeconomic 
(Simon et al., 2021) and developmental (Lebel et al., 2019) factors with 
white matter development and illustrate that, although educational 
environment is uniquely linked to FA in some tracts, other environ
mental and developmental forces are also related to tissue properties 
across the white matter. 

When examining the longitudinal relationship between white matter 
properties and educational environment over the course of 2 years, the 
rate of FA development in both the right and left arcuate was related to 
higher SEDA intercepts. This relationship was slightly, yet significantly, 
more pronounced in the left arcuate compared to the right arcuate. This 
finding suggests that educational environment might more strongly in
fluence development of the left arcuate, a white matter tract that pur
portedly supports reading skill (Yeatman et al., 2011), and is in line with 
results from intervention studies showing that changes in the properties 
of the left arcuate correspond to gains in reading (Huber et al., 2018). 

Additionally, a global analysis of the white matter using a brain-age 
modeling approach revealed a relationship between SEDA intercept and 
levels of white matter maturation, suggesting that an individual’s early 
educational opportunities are related to accelerated patterns of global 
white matter development, even when accounting for factors such as 
income-to-need ratio, family cohesion, and neighborhood stability. 
However, across the cross-sectional, longitudinal, and brain-age models, 
we also observed significant associations between white matter matu
ration and both parental education and pubertal status, suggesting that 
additional developmental and environmental factors relate to white 
matter development. These results replicate past findings linking 

parental education with differences in white matter development (Noble 
et al., 2013) but also extend the results of Holm et al. (2023), suggesting 
that puberty is related to accelerated patterns of both white matter 
development and structural properties of the brain measured through 
T1-weighted imaging. 

To the best of our knowledge, these results are the first to show a 
specific link between educational environment and white matter 
development in a sample of this magnitude. Although these data are 
purely observational and do not allow for causal reasoning, this type of 
investigation into the specific links between socioeconomic factors and 
white matter development is only possible in large-scale datasets, such 
as the ABCD study. As seen in the current results, measures of socio
economic status are highly correlated with one another, meaning that 
some indices of SES, such as household income, may confound other 
measures of SES in studies of brain development. Large samples are 
necessary to tease apart these relationships and assess how these 
potentially confounding measures relate to brain development. Thus, 
the fact that SEDA intercept predicts tissue properties of specific white 
matter tracts, as well as global brain-age measures, even when con
trolling for other developmental and environmental factors, implicates a 
specific relationship between an individual’s educational environment 
and their white matter development. 

The interpretation of SEDA intercept as a measure of the educational 
opportunities available to a learner in early childhood and elementary 
school (Drescher et al., 2022; Reardon, 2019) suggests that early 
educational experiences are related to the development of white matter 
tracts throughout elementary school and into middle school. This par
allels behavioral and educational policy research that has shown that 
gaps in reading and mathematics at the onset of elementary school, on 
average, persist throughout the course of K-12 education (Reardon, 
2013; García and Weiss, 2015; Duff et al., 2022) and that early measures 
of academic skills serve as strong predictors of later academic success 
and life outcomes (Chetty et al., 2011; Duncan et al., 2007). However 
SEDA measures are subject to multiple interpretations and intervention 
studies will be required to test causal effects of changing a student’s 
educational environment (Baker et al., 2010; Darling-Hammond et al., 
2012; Drescher et al., 2022; Reardon, 2019). 

An issue that remains to be resolved in future longitudinal research is 
whether early childhood educational opportunities continue to track 
white matter development throughout late elementary school and into 
adolescence or if the year-to-year educational opportunities afforded by 

Fig. 3. Left: Growth trajectories for Diffusion Kurtosis (DKI) FA in the left and right arcuate across the first two observations of the ABCD study. The red and blue 
lines represent the average DKI FA growth trajectories for individuals in high (Intercept = 1) or low SEDA (Intercept = − 1) intercept schools, respectively. Gray lines 
represent the observed changes in FA in the left and right arcuate for each individual present in the dataset. Right: Mean residual values for the model predicting 
Brain-Age Gap from a reduced model that excludes SEDA intercept as a predictor, but retains all other random and fixed-effects. Each bar represents either the top 
(red) or bottom (blue) 20% of participants based on their SEDA intercept scores. Error bars represent one standard error from the mean. 
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a school (SEDA slope) also shape white matter later in development. The 
full longitudinal ABCD sample will make it possible to model the 
interplay between educational opportunity and white matter develop
ment over longer timescales. Nevertheless, the findings that SEDA 
intercept is related to increased rates of FA development in the left 
arcuate indicate that differences in early educational opportunity are 
not only linked to differences in academic outcomes but also relate to the 
developmental trajectories of white matter throughout childhood and 
into adolescence. 

Furthermore, the observed relationship between SEDA intercept and 
the brain-age gap suggest that early educational opportunities may not 
only influence the development of certain white matter tracts underly
ing academic skills, but also relate to white matter development 
throughout the brain more broadly. Studies in animal models have 
shown that environmental enrichment leads to an increase in cellular 
activities related to myelination, such as the proliferation of oligoden
drocyte progenitor cells and alterations of the oligodendrocyte trans
latome in a wide range of brain regions (Forbes and Gallo, 2017; 
Nicholson et al., 2022; Goldstein et al., 2021). Evidence from human 
neuroimaging data suggests that environmental stress and caregiving 
settings relate to differences in white matter properties throughout the 
brain (Bick et al., 2015; Lebel and Deoni, 2018). Taken together, these 
results suggest that general enrichment of an individual’s educational 
environment may drive global changes in white matter, whereas op
portunities to meaningfully engage in specific subject areas may impact 
the white matter tracts subserving academic skills. Future studies are 
necessary to isolate the white matter changes driven by opportunities to 
engage in a particular academic subject area from those due to aspects of 
the educational environment that are independent of the specific aca
demic content matter. 

Future studies investigating the interplay between educational 
environment, brain development, and academic skills will be well 
served by including both functional and diffusion MRI data. The present 
analyses rely solely on diffusion MRI data and are therefore limited in 
their ability to drive conclusions about brain function. Future learning 
intervention research should leverage novel techniques combining 
functional and structural neuroimaging data (Grotheer et al., 2022, 
2019) to understand how educational environments drive learning 
related changes in functionally defined sub-bundles within major white 
matter pathways. 

Unfortunately, because the SEDA data are derived from school-level 
standardized test scores, they do not provide any insight into the specific 
aspects of the educational opportunities present within a given school 
district. A student’s experience in the classroom and subsequent learning 
opportunities can be impacted by socio-cultural equity, language use, 
student-teacher relationships, the curriculum adopted by the school 
district, and classroom organization (Goldberg et al., 2022; Watts et al., 
2021; Limlingan et al., 2020; Hamre et al., 2012), none of which 
necessarily manifest in a school’s standardized test scores. 

Although the present study provides a first step towards under
standing the relationship between educational environment and white 
matter, the multifaceted nature of these measures present a challenge for 
fully understanding how different aspects of an individual’s early 
learning environment relate to brain development. Future intervention 
studies conducted in collaboration with educational practitioners and 
more nuanced measures of the opportunities present in an educational 
environment are needed to better understand these relationships. 

Furthermore, because each participant has at most two observations, 
our longitudinal models are limited in the types of relationships 
captured by difference scores. White matter properties have been shown 
to follow non-linear growth trajectories over the lifespan (Lebel and 
Deoni, 2018; Yeatman et al., 2014), however, with only two observa
tions, one cannot effectively model non-linear relationships. Future 
research using the full longitudinal ABCD sample will have to explore 
the developmental dynamics of the white matter over the course of 
adolescence and determine whether the observed relationship between 

FA development and SEDA is best described by a linear or non-linear 
trajectory. 

In summary, these results suggest that the educational opportunities 
provided to a learner in early elementary school are related to subtle 
differences in white matter maturation, even when accounting for other 
socioeconomic factors. We observe a link between white matter devel
opment and educational environment and find that this relationship is 
strongest in the white matter tracts typically associated with academic 
skills. Future research is needed to inform the design of interventions 
and educational policies addressing inequities in education from a 
neuroscientifically-informed perspective. The current study provides the 
first direct evidence for the relationship between educational opportu
nity and brain development at scale and sheds light on the complex 
interaction between environmental factors, brain development, and 
learning. 
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